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Abstract: Considering the impact of the heterogeneous conditions of the mixture baseline distribution
on the parameter estimation of a composite dynamical system (CDS), we propose an approach to
infer the model parameters and baseline survival function of CDS using the maximum likelihood
estimation and Bayesian estimation methods. The power-trend hazard rate function and Burr type
XII mixture distribution as the baseline distribution are used to characterize the changes of the
residual lifetime distribution of surviving components. The Markov chain Monte Carlo approach
via using a new Metropolis–Hastings within the Gibbs sampling algorithm is proposed to overcome
the computation complexity when obtaining the Bayes estimates of model parameters. A numerical
example is generated from the proposed CDS to analyze the proposed procedure. Monte Carlo
simulations are conducted to investigate the performance of the proposed methods, and results show
that the proposed Bayesian estimation method outperforms the maximum likelihood estimation
method to obtain reliable estimates of the model parameters and baseline survival function in terms
of the bias and mean square error.

Keywords: composite dynamical systems; hazard rate; Markov chain Monte Carlo; mixture distribu-
tion; sequential order statistics

1. Introduction

The components in a n-component composite system often fail sequentially when
the system is on duty continuously until the system is declared as a failure system. An n-
component composite system is an n-component composite dynamical system (CDS) if the
failure of a component induces higher work loading on the surviving components of system.
Nowadays, the CDS is one of the most widely used electronic devices. The lifespan of a
CDS is usually defined as the rth(r ≤ n)-ordered component failure time due to the system
structure designed or efficiency concerned. The CDS is also named an r-out-of-n failure
system, which includes a series (r = 1) and parallel (r = n) systems of n components,
respectively. Because each component failure can induce higher loading on the surviving
components, the risk of the system is increased along with the increase of the number of
failure components. One working assumption for characterizing the increased risk of the
CDS is to assume that all surviving components in the system can equally share the loading
of stress. Therefore, the observed ordered component failure times from the CDS system of
equal load-share are called sequential order statistics (SOSs). Thereafter, the CDS will be
simply called CDS. All acronyms in this study are given in Table 1.
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Table 1. The acronyms.

BXIID, mBXIID Burr type-XII distribution, mixture-BXIID
CDF cumulative density function
CDS composite dynamical system
ECI equal-tailed credible interval
GOS generalized order statistic
GS Gibbs sampling

HCI highest credible interval
IS important sampling

LED light emitting diode
MCMC Markov chain Monte Carlo

M-H Metropolis–Hastings
MLE maximum likelihood estimate
MSE mean square error
PDF probability density function

PTHR power-trend hazard rate
SOS sequential order statistic
VGA video graphics array

1.1. Literature Review

Many researchers paid attention to the study of the reliability of CDSs in the past
twenty years. Kamps [1] proposed a unified approach based on the concept of generalized
order statistics (GOSs) for different models. When the components follow an exponential
distribution, Cramer and Kamps [2] investigated the reliability of the r-out-of-n failure
system. Cramer and Kamps [3] used SOS samples to study the methods of maximum
likelihood estimation, best linear unbiased estimation, and uniformly minimal variance
unbiased estimation. They used the three estimation methods to obtain the estimates of the
Exponential distribution parameters. Cramer and Kamps [4] provided the marginal distri-
bution function of SOS and GOSs with no restrictions on the parameters. Their findings can
be connected to the revelation transform for the beta distribution and Meijer’s G-functions.
Revathy and Chandrasekar [5] proposed statistical methods to obtain minimum risk equiv-
alent estimates of the parameters in the exponential distribution, Gamma distribution,
and location-scale families. Zhuang and Hu [6] investigated the stochastic properties of
SOS and conducted multivariate stochastic comparisons based on SOS samples. Balakrish-
nan et al. [7] studied the reliability of CDS under the a conditionally proportional hazard
rate model using semiparametric methods. They also studied the impact of using different
link functions on the maximum likelihood estimates (MLEs) based on SOS samples.

Burkschat [8] extended the SOS concept to study exchangeable random variables
under a weaker condition than the independent and identically distributed assumption.
Burkschat’s idea is able to apply to general coherent systems, such as the coherent sys-
tems of which components have dependent and non-identically distributed failure time
distributions. Beutner and Kamps [9] used SOS samples to obtain the estimates of scale pa-
rameters for different CDSs when the lifetimes of components have a general location-scale
family. Deshpande et al. [10] developed a general semiparametric multivariate family of
distributions. Their family can explicitly characterize CDSs using proportional conditional
hazards, and they proposed a nonparametric test to test whether a failure happens earlier
than the warrant or happens independently. Beutner [11] used a profile score process and
multivariate intensity ratio to analyze the test statistics and investigate their asymptotical
distribution. Bedbur [12] studied the uniformly most powerful unbiased tests with the
assumption of conditionally proportional hazard rate for different hypotheses, in which
the SOS samples are taken from a regular exponential family.

Schenk et al. [13] obtained the Bayes estimates of the Exponential distribution pa-
rameters based on multiple type-II censored SOS samples. They used inverse Gamma
distributions as prior distributions to implement Bayesian estimation. Based on SOS sam-
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ples, Navarro and Burkschat [14] presented a new lifetime representation for coherent
systems. They assumed that the component lifetimes in a coherent system have a spe-
cific dependence-type relationship. Balakrishnan et al. [15] investigated the maximum
likelihood estimation method when the SOS samples were obtained from a step stress
test. Burkschat and Navarro [16] examined mixture representations of the residual lifetime
and the inactivity time of system with failure-dependent components. Burkschat and
Torrado [17] examined the reversed hazard rate property of SOS and presented the condi-
tions of reversed hazard rate ordering and the decreasing reversed hazard rate property
of SOS. Park [18] proposed an expectation-maximization algorithm to obtain the MLE of
the survival function for an equally load-sharing system. Burkschat et al. [19] studied
statistical inference methods based on type-I censored SOS samples.

Sutar and Naik-Nimbalkar [20] examined the load-sharing phenomenon in a CDS
under accelerated life testing. They also proposed a method for testing the dependence
of component lifetimes. Esmailian and Doostparast [21] studied the maximum likelihood
estimation method based on Weibull progressive SOS samples with the conditionally
proportional hazard rate. Shafay et al. [22] used Bayesian estimation methods to predict
future SOSs for one- and two-parameter Exponential distributions. Hashempour and
Doostparast [23] used a Fisher information matrix to obtain the approximate confidence
intervals based on observed multiply system lifetimes. Bedbur et al. [24] proposed a multi-
sample model for the SOS samples of general step-stress exponents. Their proposed
methods can be applied for any absolutely continuous lifetime distribution.

Balakrishnan et al. [25] studied the reliability of a CDS when the baseline distribution
of the component lifetimes in the CDS is Burr type-XII distribution (BXIID). They used the
power-trend hazard rate (PTHR) function to characterize the increased hazard rate due
to each component failure. Hashempour and Doostparast [26] studied the reliability of
comparing heterogeneous exponential distributions based on multiply SOS samples and
the assumption of a conditionally proportional hazard rate. Bedbur et al. [27] released the
commonly used proportional assumption and allowed the hazard rates of the baseline
lifetime distributions to have situations such that each component failure can influence the
hazard rate of surviving components. When the component lifetimes have heterogeneous
Exponential distributions, Hashempour and Doostparast [28] studied Bayesian estimation
methods for multiple SOS samples. They used a generalized likelihood ratio test to test the
homogeneity property. Baratnia and Doostparast [29] considered an extension of SOS to
characterize the system lifetimes with independent but heterogeneous components for the
distribution family studied by Burkschat and Navarro [30]. Barakat et al. [31] developed
two pivotal quantities and established prediction intervals for future lifetimes from a
two-parameter Exponential distribution based on GOSs with a general scheme. Katzur
and Kamps [32] used a Bayesian two-class discrimination approach with known prior
probabilities for classification based on the recorded data with a SOS scheme.

1.2. Motivation and Organization

One CDS application is in light-emitting diode (LED) panels. The LED panel is
composed of an array of LEDs. Because the current on the LED panel is unchanged,
each LED failure will enhance the stress loading of each surviving LED until the LED
panel malfunctions. Tsai et al. [33] proposed a Bayesian estimation method to evaluate the
reliability of the CDS with heterogeneity condition, and Tsai et al. [34] proposed a Bayesian
method and a profile maximum likelihood estimation method to infer the reliability of
a video graphics array (VGA) when the adapters come from dual suppliers based on
interval-censored samples. When dual suppliers support components for a CDS company
simultaneously, using a mixture distribution is better than using a single distribution for
characterizing the baseline component lifetimes for the study of CDS reliability.

Among the existing relevant studies about the reliability inference of CDS based on
SOS samples, we find that the parametric PTHR model proposed by Balakrishnan et al. [25]
is flexible and simple to use. Balakrishnan et al. [25] presented the analytical statistical
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properties for their proposed maximum likelihood estimation method. It is important
to consider the impact of the heterogeneous quality of component lifetimes from dual
suppliers on the reliability inference of CDS with a PTHR function. Because the likelihood
function based on the SOS sample drawn from a mixture-BXIID is very complicated,
searching the MLEs of the CDS model parameters using gradient computation algorithms
could be intractable. Therefore, the Bayesian estimation method is considered in this
study to obtain the Bayes estimates of the CDS model parameters based on mixture-BXIID
SOS samples. For Bayesian estimation, the algorithms of Gibbs sampling (GS), important
sampling (IS), and Metropolis–Hastings (M-H) have been widely used to implement the
Markov chain Monte Carlo (MCMC) approach. When the analytic form of the conditional
posterior distribution is available, the GS MCMC method is efficient to obtain Bayes
estimates. However, it often fails to obtain the analytic form of the conditional posterior
distribution. In such situations, we can consider using either the IS MCMC or M-H MCMC
method to replace the GS MCMC method to obtain Bayes estimates. However, we find that
both GS MCMC and IS MCMC methods are difficult to directly apply in this study.

On the basis of the aforementioned discussions, the impact of the heterogeneous
condition of the mixture baseline distribution on the parameter estimation of CDS is con-
sidered in this study. Moreover, maximum likelihood estimation and Bayesian estimation
methods are proposed to infer the model parameters and the baseline survival function of
CDS. In Section 2, we will show that the likelihood functions for the maximum likelihood
estimation method in this study are very complicated. This fact could result in divergence
results when using gradient iterative methods to find the MLEs of the model parameters.
Another difficulty is getting the analytic form of the posterior distribution to find reliable
Bayes estimates of the parameters in a CDS based on SOS samples. In order to overcome
the computation complexity when obtaining the Bayes estimates of model parameters,
the MCMC approach is used for Bayesian estimation, and we propose a new M-H within
the GS algorithm to implement the MCMC approach. To the best of our knowledge, no
existing works study the baseline distribution function of components in CDS by using
SOS samples from a mixture of BXIIDs. We use the term “mixture-BXIID” to denote the
mixture distribution of the two-component BXIIDs and keep the term BXIID to denote
the typical Burr type-XII distribution hereafter. The major contribution of this study is to
propose a maximum likelihood estimation and Bayesian estimation methods for estimating
the model parameters and the baseline survival function of mixture-BXIID in the CDS.
Moreover, the highest credible interval (HCI) and equal-tailed credible interval (ECI) of the
baseline survival function are also obtained for the mixture-BXIID.

The rest of this paper is organized as follows. In Section 2, the BXIID and mixture-
BXIID with the PTHR function are investigated based on SOS samples. The maximum
likelihood estimation method and Bayesian estimation method are established. Moreover,
we present the MH-GS MCMC approach to implement the Bayesian estimation method.
In Section 3, the proposed MH-GS MCMC approach is illustrated with a numerical example.
The parameter determination of the proposed MH-GS MCMC approach and the process
via using Markov chains to establish the HCI and ECI of the baseline survival function
of mixture-BXIID are also discussed in Section 3. In Section 4, Monte Carlo simulations
are conducted to study the estimation performance of the proposed maximum likelihood
estimation method and Bayesian estimation method in terms of the quality measures of
bias and mean square error (MSE). Some concluding remarks are given in Section 5.

2. The Lifetime Distribution and Statistical Methods

Let the CDS components from a supplier have lifetimes that follow a baseline two-
parameter BXIID, whose probability density function (PDF), cumulative density function
(CDF), and hazard rate function are, respectively, defined by

f0(x) ≡ f0(x | β, δ) =
β

δ

(
1 +

x
δ

)−β−1
, x > 0, (1)



Mathematics 2021, 9, 810 5 of 17

F0(x) ≡ F0(x | β, δ) = 1−
(

1 +
x
δ

)−β
, x > 0, (2)

and
h0(x) ≡ h0(x | β, δ) =

β

δ

(
1 +

x
δ

)−1
, x > 0, (3)

where δ > 0 is scale parameter and β > 0 is the outer-shape parameter. This is a special
case of three-parameter BXIID with inner-shape 1. Therefore, the survival function of each
basic component is defined by

S0(x) = 1− F0(x) =
(

1 +
x
δ

)−β
, x > 0, (4)

Because the three-parameter BXIID with two shape parameters could result in a
model identification problem for parameter estimation, we only keep the outer-shape and
scale parameters for the mixture-BXIID model in this study when dual suppliers occur.
Denote the BXIID defined in Equations (1)–(4) by BXIID(β, δ) hereafter. The format of the
mixture-BXIID model for dual suppliers will be addressed later.

When all components come from a single supplier, each component failure means
that the CDS equally redistributes the stress loading to all surviving components and
changes their lifetime distributions. Under this situation, the lifetimes of the surviving
components in the CDS follow BXIID with different hazard rates at each failure. At the
jth SOS, the PDF, CDF, and hazard rate function of the lifetimes of surviving components

can be defined by f j(x), Fj(x), and hj(x) =
f j(x)

1−Fj(x) , j = 1, 2, ...n, respectively, where

hj(x) ≥ hj−1(x), for j = 1, 2, ...n, and h0(x) = f0(x)
1−F0(x) . The PTHR model proposed by

Balakrishnanet et al. [25],

hj(x) = αjh0(x), j = 1, 2, · · · , n, (5)

is considered to model the increased hazard rate due to component failure, where αj(≥ 1)
denotes the multiple of baseline hazard rate for the hazard rate after the jth failure. The CDF
corresponding to hj(x) in Equation (5) is Fj(x) = 1− [1− F0(x)]αj for j = 1, 2, · · · , n.

When dual suppliers support the components simultaneously, the failure times of
all baseline components should be modeled by the mixture-BXIID of BXIID(β, δ1) and
BXIID(β, δ2). Then, the PDF of the baseline mixture-BXIID can be addressed by

g0(x) ≡ p f10(x) + q f20(x), (6)

where fi0 ≡ fi0(x | β, δi) is the PDF of BXIID(β, δi), i = 1, 2; 0 ≤ p ≤ 1 and q = 1− p. We
can represent Equation (6) by

g0(x) = p f10(x) + q f20(x)

= p× β

δ1

(
1 +

x
δ1

)−β−1
+ q× β

δ2

(
1 +

x
δ2

)−β−1
. (7)

Let Fi0 ≡ Fi0(x | β, δi) for i = 1, 2 be the corresponding CDFs. The CDF of the mixture-
BXIID can be presented by

G0(x) ≡ pF10(x) + qF20(x)

= p

(
1−

(
1 +

x
δ1

)−β
)
+ q

(
1−

(
1 +

x
δ2

)−β
)

. (8)

Denote the mixture-BXIID defined by Equations (7) and (8) by mBXIID(β, δ1, δ2, p)
hereafter.
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Let y =
(

x(1), x(2), · · · , x(r)
)

= (y1, y2, · · · , yr) denote the realizations of the SOS
sample of the first r component failure times from the mBXIID(β, δ1, δ2, p). The likelihood
function based on the sample y can be defined by

L(β, δ1, δ2, α1, · · · , αr, p | y) = an,r

(
r

∏
j=1

αj

)
×
(

r−1

∏
j=1

(
1− G0(yj)

)mj g0(yj)

)
× (1− G0(yr))

mr g0(yr), (9)

where an,r = n!/(n − r)!, mj = (n − j + 1)αj − (n − j)αj+1 − 1 for j = 1, 2, · · · , r − 1
and mr = αr(n − r + 1) − 1. Using the PTHR model of αj = θ j, j = 1, 2, · · · , r in
Equation (9) with θ ≥ 1, it can be shown that mj = (n − j + 1)θ j − (n − j)θ j+1 − 1 and
mr = (n− r + 1)θr − 1. Let Θ = (θ1, θ2, θ3, θ4, θ5) = (β, δ1, δ2, θ, p). The likelihood function
of Equation (9) can be represented by

L(Θ | y) = an,r

(
r

∏
j=1

θ j

)

×
(

r−1

∏
j=1

(
1− pF10(yj)− qF20(yj)

)mj ×
(

p f10(yj) + q f20(yj)
))

× (1− pF10(yr)− qF20(yr))
mr × (p f10(yr) + q f20(yr)) (10)

and the log-likelihood function can be presented by

`(Θ) ≡ log(L(Θ | y))

= log(an,r) +
r(r + 1)

2
log(θ) +

r−1

∑
j=1

{
mj log

(
1− pF10(yj)− qF20(yj)

)
+ log

(
p f10

(
yj
)
+ q f20

(
yj
))
}+ mr log(1− pF10(yr)− qF20(yr))

+ log(p f10(yr) + q f20(yr)). (11)

After straightforward algebraic computation, it can be shown that the first derivatives
of `(θ) with respect to β, δ1, δ2, θ and p are given as follows:

∂`(Θ)

∂β
=

r−1

∑
j=1

[
−mj

1− G0(yj)
×
(

p
∂F10(yj)

∂β
+ q

∂F20(yj)

∂β

)

+
1

g0(yj)

(
p

∂ f10(yj)

∂β
+ q

∂ f20(yj)

∂β

)]

− mr

1− G0(yr)
×
(

p
∂F10(yr)

∂β
+ q

∂F20(yr)

∂β

)
+

1
g0(yr)

(
p

∂ f10(yr)

∂β
+ q

∂ f20(yr)

∂β

)
(12)

∂`(Θ)

∂δ1
=

r−1

∑
j=1

[
−mj

1− G0(yj)
× p

∂F10(yj)

∂δ1
+

1
g0(yj)

× p
∂ f10(yj)

∂δ1

]

− mr

1− G0(yr)
× p

∂F10(yr)

∂δ1
+

1
g0(yr)

× p
∂ f10(yr)

∂δ1
(13)
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∂`(Θ)

∂δ2
=

r−1

∑
j=1

[
−mj

1− G0(yj)
× q

∂F20(yj)

∂δ2
+

1
g0(yj)

× q
∂ f20(yj)

∂δ2

]

− mr

1− G0(yr)
× q

∂F20(yr)

∂δ2
+

1
g0(yr)

× q
∂ f20(yr)

∂δ2
(14)

∂`(Θ)

∂θ
=

r(r + 1)
2θ

+
r−1

∑
j=1

∂mj

∂θ
× log

(
1− G0(yj)

)
+

∂mr

∂θ
× log(1− G0(yr)) (15)

∂`(Θ)

∂p
=

r−1

∑
j=1

{
mj

1− G0(yj)
×
(

F20(yj)− F10(yj)
)
+

1
g0(yj)

×
(

f10(yj)− f20(yj)
)}

+
mr

1− G0(yr)
× (F20(yr)− F10(yr)) +

1
g0(yr)

× ( f10(yr)− f20(yr)) (16)

where
∂F10(yj)

∂β
=

(
1 +

yj

δ1

)−β

log
(

1 +
yj

δ1

)
, j = 1, 2, · · · , r.

∂F20(yj)

∂β
=

(
1 +

yj

δ2

)−β

log
(

1 +
yj

δ2

)
, j = 1, 2, · · · , r.

∂ f10(yj)

∂β
=

1
δ1

(
1 +

yj

δ1

)−β−1
− β

δ1

(
1 +

yj

δ1

)−β−1
log
(

1 +
yj

δ1

)
, j = 1, 2, · · · , r.

∂ f20(yj)

∂β
=

1
δ2

(
1 +

yj

δ2

)−β−1
− β

δ2

(
1 +

yj

δ2

)−β−1
log
(

1 +
yj

δ2

)
, j = 1, 2, · · · , r.

∂F10(yj)

∂δ1
= −β

(
1 +

yj

δ1

)−β−1 yj

δ2
1

, j = 1, 2, · · · , r.

∂ f10(yj)

∂δ1
= − β

δ2
1

(
1 +

yj

δ1

)−β−2((
1 +

yj

δ1

)
−

yj

δ1
(β + 1)

)
, j = 1, 2, · · · , r.

∂F20(yj)

∂δ2
= −β

(
1 +

yj

δ2

)−β−1 yj

δ2
2

, j = 1, 2, · · · , r.

∂ f20(yj)

∂δ2
= − β

δ2
2

(
1 +

yj

δ2

)−β−1
+

β

δ2
(β + 1)

(
1 +

yj

δ2

)−β−2 yj

δ2
2

, j = 1, 2, · · · , r.

∂mj

∂θ
= (n− j + 1)jθ j−1 − (n− j)(j + 1)θ j, j = 1, 2, · · · , r− 1.

and
∂mr

∂θ
= (n− r + 1)rθr−1.

Because Equations (12)–(16) are complicated, it is very difficult to obtain the second
derivative of the log-likelihood function with respect to β, δ1, δ2, θ, and p, respectively,
so as to obtain the Fisher information matrix. Therefore, it is intractable to find the
asymptotical confidence intervals of the model parameters using the Fisher information
matrix. In this paper, we propose a MH-GS MCMC method to obtain the Bayes estimates
of the model parameters and the baseline survival function. Denote the Bayes estimators
of β, λ, δ, θ, and p by β̂B, λ̂B, δ̂B, θ̂B, and p̂B, respectively. Consider the following joint
prior distribution:

π(Θ) = π1(β)× π2(δ1)× π3(δ2)× π4(θ)× π5(p), (17)
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where

π1(β) =
ηκ1

1
Γ(κ1)

βκ1−1e−η1β, β > 0,

π2(δ1) =
ηκ2

2
Γ(κ2)

δκ2−1
1 e−η2δ1 , δ1 > 0,

π3(δ2) =
ηκ3

3
Γ(κ3)

δκ3−1
2 e−η3δ2 , δ2 > 0,

π4(θ) =
1

b2 − b1
, b1 < θ < b2.

and
π5(p) = 1, 0 < p < 1.

That is, we consider that the shape parameter is β ∼ Gamma(η1, κ1) and the scale
parameters are δ1 ∼ Gamma(η2, κ2) and δ2 ∼ Gamma(η3, κ3); θ follows a Uniform distribu-
tion over (b1, b2), denoted by θ ∼ U(b1, b2), and p ∼ U(0, 1). Because the PTHR function
is used in this study, it can be shown that b1 = 1, and b2 is a constant larger than but close
to 1. The determination of b2 will be studied in Section 3.

The posterior distribution of Θ, given the SOS sample y, can be obtained by

π(Θ | y) ∝ L(Θ | y)× π(Θ)

∝

(
r

∏
j=1

θ j

)
×
(

r−1

∏
j=1

(
1− G0(yj)

)mj × g0(yj)

)
× (1− G0(yr))

mr g0(yr)× βκ1−1e−η1β × δκ2−1
1 e−η2δ1 × δκ3−1

2 e−η3δ2 . (18)

The conditional posterior PDFs of β, λ, δ, θ, and p can be presented by

π(β | δ1, δ2, θ, p, y) ∝

(
r−1

∏
j=1

(
1− G0(yj)

)mj × g0(yj)

)
× (1− G0(yr))

mr g0(yr)× βκ1−1e−η1β, (19)

π(δ1 | β, δ2, θ, p, y) ∝

(
r−1

∏
j=1

(
1− G0(yj)

)mj × g0(yj)

)
× (1− G0(yr))

mr g0(yr)× δκ2−1
1 e−η2δ1 , (20)

π(δ2 | β, δ1, θ, p, y) ∝

(
r−1

∏
j=1

(
1− G0(yj)

)mj × g0(yj)

)
× (1− G0(yr))

mr g0(yr)× δκ3−1
2 e−η3δ2 , (21)

π(θ | β, δ1, δ2, p, y) ∝

(
r

∏
j=1

θ j

)
×
(

r−1

∏
j=1

(
1− G0(yj)

)mj

)
× (1− G0(yr))

mr , (22)

and

π(p | β, δ1, δ2, θ, y) ∝

(
r−1

∏
j=1

(
1− G0(yj)

)mj × g0(yj)

)
× (1− G0(yr))

mr g0(yr), (23)
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respectively.
It is intractable to use the complete conditional probabilities of π(β | δ1, δ2, θ, p, y),

π(δ1 | β, δ2, θ, p, y), π(δ2 | β, δ1, θ, p, y), π(θ | β, δ1, δ2, p, y), and π(p | β, δ1, δ2, θ, y) to
implement the GS MCMC or IS MCMC methods. Therefore, the MH-GS MCMC method
is proposed to obtain the Bayes estimates of model parameters due to the fact that the
proposed MH-GS MCMC method only uses the M-H algorithm and Equations (19)–(23)
to update the parameters in the MCMC procedure. The steps to implement the MH-GS
MCMC method are presented as follows.

Method I: The MH-GS MCMC method.

Initial Step: Give arbitrary initial vales of β(0), δ
(0)
1 , δ

(0)
2 , θ(0), and p(0)1 from the respec-

tive parameter domains; propose a transition probability function, ωj(θ
∗
j | θ

(i)
j ),

to generate a possible θ∗j , given θi
j for j = 1, 2, 3, 4, 5; and let i = 0.

Step 1: Implementing Step 2 N times, i.e., 1 ≤ i ≤ N, where N is a big positive number.

Step 2: For i = i + 1, use Step 2.1 to Step 2.5 to update β(i), δ
(i)
1 , δ

(i)
2 , θ(i) and p(i). The ac-

ceptance criterion is based on the M-H algorithm, see in [35].

Step 2.1: Generate β∗ ∼ ω1

(
β∗ | β(i)

)
and u ∼ U(0, 1).

If u ≤ min

{
1,

π
(

β∗ |δ(i)1 ,δ(i)2 ,θ(i),p(i),y
)

ω1(β(i) |β∗)

π
(

β(i) |δ(i)1 ,δ(i)2 ,θ(i),p(i),y
)

ω1(β∗ |β(i))

}
, update β(i+1) by β∗;

otherwise, β(i+1) = β(i).
Step 2.2: Generate δ∗1 ∼ ω2

(
δ∗1 | δ

(i)
1

)
and u ∼ U(0, 1).

If u ≤ min

{
1,

π
(

δ∗1 |β(i+1),δ(i)2 ,θ(i),p(i),y
)

ω2

(
δ
(i)
1 |δ

∗
1

)
π
(

δ
(i)
1 |β(i+1),δ(i)2 ,θ(i),p(i),y

)
ω2

(
δ∗1 |δ

(i)
1

)
}

, update δ
(i+1)
1 by δ∗1 ;

otherwise, δ
(i+1)
1 = δ

(i)
1 .

Step 2.3: Generate δ∗2 ∼ ω3

(
δ∗2 | δ

(i)
2

)
and u ∼ U(0, 1).

If u ≤ min

{
1,

π
(

δ∗2 |β(i+1),δ(i+1)
1 ,θ(i),p(i),y

)
ω2

(
δ
(i)
2 |δ

∗
2

)
π
(

δ
(i)
2 |β(i+1),δ(i+1)

1 ,θ(i),p(i),y
)

ω2

(
δ∗2 |δ

(i)
2

)
}

, update δ
(i+1)
2 by δ∗2 ;

otherwise, δ
(i+1)
2 = δ

(i)
2 .

Step 2.4: Generate θ∗ ∼ ω4

(
θ∗ | θ(i)

)
and u ∼ U(0, 1).

If u ≤ min

{
1,

π
(

θ∗ |β(i+1),δ(i+1)
1 ,δ(i+1)

2 ,p(i),y
)

q3(θ(i) |θ∗)

π
(

θ(i) |β(i+1),δ(i+1)
1 ,δ(i+1)

2 ,p(i),y
)

q3(θ∗ |θ(i))

}
, update θ(i+1) by θ∗;

otherwise, θ(i+1) = θ(i).
Step 2.5: Generate p∗ ∼ ω5

(
p∗ | p(i)

)
and u ∼ U(0, 1).

If u ≤ min

{
1,

π
(

p∗ |β(i+1),δ(i+1)
1 ,δ(i+1)

2 ,θ(i+1),y
)

q3(p(i) |p∗)

π
(

p(i) |β(i+1),δ(i+1)
1 ,δ(i+1)

2 ,θ(i+1),y
)

q3(p∗ |p(i))

}
, update p(i+1) by p∗;

otherwise, p(i+1) = p(i).

Step 3: Go to Step 2 until i = N.

Step 4: Denote the obtained Markov chains by
{

β(i), i = 1, 2, · · · , N
}

,
{

δ
(i)
1 , i = 1, 2, · · · , N

}
,{

δ
(i)
2 , i = 1, 2, · · · , N

}
,
{

θ(i), i = 1, 2, · · · , N
}

, and
{

p(i), i = 1, 2, · · · , N
}

, respectively.
Based on the square error loss function, the Bayes estimator can be the sample mean
of the obtained Markov chain after burn-in, N0, and is denoted by

σ̂B =
1

N − N0

N

∑
t=N0+1

σ(t), σ = β, δ1, δ2, θ, p. (24)
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We suggest the proposed transition probability function, ωj(θ
∗
j | θ

(i)
j ), as a symmetric

function about θ
(i)
j for j = 1, 2, 3, 4, 5 to reduce computational loading. For example, Normal

and Uniform distributions with means of θ
(i)
j are two widely used transition probability

functions. Based on the Markov chains of
{

β(i), i = 1, 2, · · · , N
}

,
{

δ
(i)
1 , i = 1, 2, · · · , N

}
,{

δ
(i)
2 , i = 1, 2, · · · , N

}
,
{

θ(i), i = 1, 2, · · · , N
}

, and
{

p(i), i = 1, 2, · · · , N
}

, we can establish
the Markov chain of the baseline survival distribution

Ŝg0(x) = 1− Ĝ0
(
x | β̂B, δ̂1B, δ̂2B, θ̂B, p̂B

)
= p̂B

(
1 +

x
δ̂1B

)−β̂B

+ (1− p̂B)

(
1 +

x
δ̂2B

)−β̂B

. (25)

If we use a non-informative prior distribution to obtain the Bayes estimates, the major
contribution of the posterior distribution comes from the likelihood function. Subsequently,
the obtained Bayes estimates of the parameters are closed to the MLEs. In this study, we can
select the hyperparameters such that the variances of the Gamma prior distributions of β, δ1,
and δ2 are large enough to make the prior distribution non-informative. Then, the obtained
Bayes estimates of parameters are closed to the MLEs. This method can overcome the
possible divergence problem by using gradient methods of solving the likelihood equations
of ∂`(Θ)

∂β = 0, ∂`(Θ)
∂δ1

= 0, ∂`(Θ)
∂δ2

= 0, ∂`(Θ)
∂θ = 0, and ∂`(Θ)

∂p = 0 to obtain the MLEs of the
model parameters.

3. Discussions

In this section, a numerical SOS sample of n = 30 and r = 15 was generated from the
baseline of mBXIID(β = 5, δ1 = 5, δ2 = 10, p = 0.7) to demonstrate the implementation of
the proposed MH-GS MCMC method. The PTHR model with θ = 1.02 is considered in
this example. The scenario of this numerical example for CDS is to assume that the CDS is
claimed as failure if 15 or half of the components fail; that is, the CDS is claimed as failed if
half of the components in the CDS fail or the hazard rate increases to approximately 34.6%,
h15(x) = θ15h0(x) = (1.346)h0(x), from the baseline hazard rate. In order to generate a SOS
sample from the mixture baseline distribution of mBXIID(β = 5, δ1 = 5, δ2 = 10, p = 0.7),
we need to generate one more random sample {u1, u2, ..., ur} from U(0, 1). If ui < p, then
the ith SOS is generated from the BXIID (β = 5, δ1 = 5); otherwise, the ith SOS is generated
from the BXIID (β = 5, δ2 = 10). The 15 generated SOSs from the mBXIID (β = 5,
δ1 = 5, δ2 = 10, p = 0.7) are reported in Table 2.

Table 2. The numerical sequential order statistic (SOS) sample from mixture-BXIID for β = 5, δ1 = 5,
δ2 = 10, p = 0.7, and θ = 1.02 when n = 30 and r = 15.

0.0081 0.1869 0.1962 0.2422 0.2572
0.2649 0.3477 0.3752 0.4324 0.5402
0.6523 0.6579 0.7236 0.7536 0.8726

To determine the parameters of N and N1 in the proposed MH-GS MCMC method
for practical use, we first generate N = 11,000 Markov chains for the MH-GS MCMC
method, in which the first N1 = 1000 chains are removed for burn-in. The posterior
distribution and proposals for the MH-GS MCMC method are set up as follows: the prior
distribution of π(Θ) defined in Equation (17) is considered with the hyperparameters
η1 = η2 = η3 = 1, k1 = β, k2 = δ1, k3 = δ2, b1 = 1 and constant b2, where b2 is the value
when the hazard rate of CDS at the time of rth failure increases to 2 times of the baseline
hazard rate. Let the one-step-ahead parameters of β∗, δ∗1 , δ∗2 , p∗, and θ∗ be β(i), δ

(i)
1 , δ

(i)
2 ,

p(i), and θ(i), respectively. The normal distributions of β∗ ∼ N(β(i), 12), δ∗1 ∼ N(δ
(i)
1 , 12),

δ∗2 ∼ N(δ
(i)
2 , 12), p∗ ∼ N(p(i), 0.32) and the uniform distribution θ∗ ∼ U(1, b2) are used
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as proposals to generated the values of β∗, δ∗1 , δ∗2 , p∗, and θ∗ in Method I. If β(∗) < 0, then

β∗ = β(i); if δ∗1 < 0, then δ∗i = δ
(i)
i for i = 1, 2; and if p∗ < 0 or p∗ > 1, then p∗ = p(i).

We found that the Markov chains of β are highly correlated as their first-order auto-
correlation coefficient is about 0.80, and the first-order autocorrelation coefficients of the
other Markov chains of δ1, δ2, θ and p are smaller than 0.15. Therefore, we need to trim the
Markov chains by spacing to reduce the autocorrelation among the Markov chains of β.
To study the adequate interval length for spacing by simulations, we regenerate Markov
chains of length N = 31,000 and remove the first N1 = 1000 chains for burn-in based on
the SOS sample in Table 2 by using the proposed MH-GS MCMC method and check the
first-order autocorrelation coefficient of the Markov chains of β by spacing with the interval
lengths of 1, 3, 5, 10, 15, and 20, respectively. We find that the spacing of interval length
10 can significantly reduce the first-order autocorrelation coefficient among the Markov
chains of β below 0.2. Based on the simulation findings, all Markov chains are slimmed by
taking one of every 10 Markov chains to reduce the autocorrelation of Markov chains.

Figures 1–5 present the 3000 slimmed Markov chains of β, δ1, δ2, θ and p. In the scan
of Figures 1–5, we find that the proposed MH-GS MCMC method performs well to obtain
the Bayes estimates of the CDS model parameters. The Bayes estimates are β̂B = 4.471,
δ̂1 = 4.826, δ̂2 = 9.706, θ̂B = 1.023, and p̂B = 0.60. All Markov chains well cover their true
parameter. All the acceptance rates are high and reported by 0.715, 0.823, 0.95, 0.708, and
0.582 for the Markov chains of β, δ1, δ2, θ, and p, respectively. The first-order autocorrelation
coefficients are 0.192, −0.001, 0.009, −0.004, and 0.058 for the slimmed Markov chains
of β, δ1, δ2, θ, and p, respectively. Let x = 0.5, it can be shown that the baseline survival
function is Sg0(x) = 1− G0(x) = 0.669 for x = 0.5. The Markov chains of Sg0(x = 0.5) can
be established through using the slimmed Markov chains of β, δ1, δ2, θ, p and Equation (8).
The Bayes estimate of Sg0(x = 0.5) is Ŝg0,B(x) = 0.709.

The Markov chains of Sg0(x) can be used to establish the empirical distribution of
Ŝg0,B(x), and then the HCI and ECI of Sg0(x) can be obtained. Based on the SOS sample
in Table 2, the 95% HCI of Sg0(x = 0.5) is (0.588, 0.820) and the 95% ECI of Sg0(x = 0.5)
is (0.581, 0.815). The coverage probabilities of the 95% HCI and ECI of Sg0(x = 0.5) are
evaluated using the proposed MH-GS MCMC method with 1000 iterations. We obtain
coverage probabilities of 0.961 and 0.974 for the HCI and ECI of Sg0(x = 0.5), respectively.
The simulation results indicate that the coverage probability of HCI is closer to the nominal
coverage probability than the coverage probability of ECI. Therefore, the HCI outperforms
the ECI for the proposed MH-GS MCMC method in terms of the coverage probability.

Figure 1. The Markov chains of β. The horizontal line is the true value of β.
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Figure 2. The Markov chains of δ1. The horizontal line is the true value of δ1.

Figure 3. The Markov chains of δ2. The horizontal line is the true value of δ2.

Figure 4. The Markov chains of θ. The horizontal line is the true value of θ.
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Figure 5. The Markov chains of p. The horizontal line is the true value of p.

4. Monte Carlo Simulations

To explore the estimation quality of the proposed Bayesian estimation method
using an MH-GS MCMC approach, an intensive simulation study was conducted, and
the proposed Bayesian estimation method is used to obtain the Bayes estimates of
the CDS model parameters based on the SOS samples. As the parameter setting in
Section 3, we consider the baseline of mBXIID (β = 5, δ1 = 5, δ2 = 10, p = 0.7) for
simulations with the parameters of (n, r) = (30, 15), (50, 25), (80, 30), (100, 30), θ = 1.02,
and p = 0.2, 0.3, 0.5. The CDS is defined as failure if half or over 30 of the components
fail. We are also interested to evaluate the estimation quality of the proposed Bayesian
estimation method for different mixture probabilities. We use N = 31,000, N1 = 1000,
and interval length 10 for spacing to implement the MH-GS MCMC method. Moreover,
the posterior distribution of π(Θ) in Equation (18) with the hyperparameters η1 = η2 =
η3 = 1, k1 = β, k2 = δ1, k3 = δ2, b1 = 1 and constant b2 is used to obtain the Bayes
estimates of the model parameters, where b2 is the value when the hazard rate of CDS at
the time of rth failure increases to 2 times of the baseline hazard rate. The proposals of
β∗ ∼ N(β(i) , 12), δ∗1 ∼ N(δ

(i)
1 , 12), δ∗2 ∼ N(δ

(i)
2 , 12), p∗ ∼ N(p(i) , 0.32), and θ∗ ∼ U(1, b2)

are used to generated the values of β∗ , δ∗1 , δ∗2 , θ∗ and p∗ in Method I. If β∗ < 0, then

β∗ = β(i) ; if δ∗1 ≤ 0, then δ∗i = δ
(i)
i for i = 1, 2; and if p∗ < 0 or p∗ > 1, then p∗ = p(i) .

We repeat the proposed Bayesian estimation method 10,000 times to obtain 10,000
Bayes estimates of β, δ1, δ2, θ and p, then the 10,000 Bayes estimates are used to evaluate
the bias and MSE for each Bayes estimate. Because the scales of the parameters are
different, we use relative bias and relative square root of MSE, which are free of the scale,
as the performance measures to study the estimation quality of the proposed Bayesian
estimation method. The relative bias stands for the bias over the true parameter, and the
relative square root of MSE stands for the square root of MSE over the true parameter.
We use rBias and rsqMSE to denote the relative bias and relative square root of MSE for
simplicity hereafter. All simulation results based on the proposed Bayesian estimation
method are reported in Tables 3–5.
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Table 3. The relative bias (rBias) and relative square root of the mean square error (rsqMSE) of Bayes
estimates for p = 0.2.

n r β̂B δ̂1B δ̂2B θ̂B p̂B

30 15 rBiae 0.1032 −0.0279 −0.0134 0.0039 0.6278
rsqMSE 0.1034 0.0281 0.0135 0.0039 0.6282

50 25 rBias 0.0953 0.0001 −0.0078 −0.0055 0.6083
rsqMSE 0.0955 0.0032 0.0080 0.0055 0.6086

80 30 rBias 0.0275 0.0506 0.0194 −0.0060 0.6146
rsqMSE 0.0280 0.0507 0.0195 0.0060 0.6149

100 30 rBias −0.1522 0.0073 −0.0199 −0.0070 0.5168
rsqMSE 0.1522 0.0079 0.0200 0.0070 0.5172

Table 4. The rBias and rsqMSE of Bayes estimates for p = 0.3.

n r β̂B δ̂1B δ̂2B θ̂B p̂B

30 15 rBias 0.0092 −0.0029 0.0359 0.0053 0.2283
rsqMSE 0.0112 0.0044 0.0359 0.0053 0.2288

50 25 rBias 0.2052 −0.0036 −0.0421 −0.0053 0.2994
rsqMSE 0.2054 0.0047 0.0422 0.0053 0.2997

80 30 rBias 0.3267 0.0425 0.0054 −0.0099 0.2757
rsqMSE 0.3268 0.0426 0.0057 0.0099 0.2761

100 30 rBias 0.0895 −0.0443 0.0009 −0.0086 0.2236
rsqMSE 0.0897 0.0444 0.0019 0.0086 0.2241

Table 5. The rBias and rsqMSE of Bayes estimates for p = 0.5.

n r β̂B δ̂1B δ̂2B θ̂B p̂B

30 15 rBias 0.0697 −0.0113 0.0217 0.0041 0.0035
rsqMSE 0.0701 0.0118 0.0217 0.0041 0.0099

50 25 rBias −0.0310 0.0114 −0.0155 −0.0044 −0.0167
rsqMSE 0.0315 0.0118 0.0156 0.0044 0.0192

80 30 rBias −0.2359 <0.0001 0.0165 −0.0075 −0.0646
rsqMSE 0.2359 0.0029 0.0166 0.0075 0.0653

100 30 rBias 0.1844 −0.0119 0.0060 −0.0066 0.0442
rsqMSE 0.1845 0.0122 0.0062 0.0066 0.0452

In order to compare the estimation performance of the proposed Bayesian estimation
method with the maximum likelihood estimation method, the MLEs of β, δ1, δ2, θ, and p
are also obtained and denoted by β̂, δ̂1, δ̂2, θ̂, and p̂, respectively. Moreover, the rBias and
rsqMSE of each MLE are evaluated based on 10,000 obtained MLEs. Because there is a high
probability that the gradient methods cannot successfully solve log-likelihood equations to
obtain the MLEs of model parameters, we use the proposed Bayesian estimation method with
a non-informative prior distribution to obtain approximate MLEs. Let κ1 = κ2 = κ3 = 100
and η1 = η2 = η3 = 1 in Equation (17) to make the Gamma distributions of β, δ1, and δ2
have a big variance, and then the prior distribution of Equation (17) becomes non-informative.
All simulation results based on the maximum likelihood estimation method are reported in
Tables 6–8. In view of Tables 3–8, we find the following results.

1. The Bayes estimates in Tables 3–5 are more reliable and outperform the MLEs in
Tables 5–7 in terms of the measures of bias and MSE. The rBias and rsqMSE of the
Bayes estimate are smaller than the rBias and rsqMSE of MLE.

2. The estimation results in Tables 3–5 indicate that the estimation quality of the Bayes
estimate for the mixture proportion is worse than the estimation quality of the Bayes
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estimates for other parameters. Moreover, the censoring rate significantly influences the
estimation quality of Bayes estimates.

3. The maximum likelihood estimation method is less reliable for estimating the mixture
proportion and shape parameter. Moreover, the acceptance rate is low for the Markov
chains of the parameters of θ and p if non-informative prior is used to implement
the Bayesian estimation methods. The rBias and rsqMSE of the MLEs of β and p in
Tables 6–8 are large even when the sample size increases to 100 or the censoring rate is
high. The findings mean that it could fail to use the maximum likelihood estimation
method to obtain reliable estimates of the model parameters if the component lifetimes
in CDS follow a baseline mixture distribution.

Table 6. The rBias and rsqMSE of maximum likelihood estimates (MLEs) for p = 0.2.

n r β̂ δ̂1 δ̂2 θ̂ p̂

30 15 rBias 5.3671 0.0603 0.0549 −0.0179 −0.7863
rsqMSE 5.3673 0.0604 0.055 0.0179 0.7863

50 25 rBias 5.5802 0.1087 0.0203 −0.0185 −0.8204
rsqMSE 5.5804 0.1087 0.0204 0.0185 0.8205

50 30 rBias 3.3028 0.0643 0.0206 −0.0187 −0.8855
rsqMSE 3.3029 0.0644 0.0207 0.0187 0.8855

100 30 rBias 4.2000 0.0955 0.0556 −0.0185 −0.8890
rsqMSE 4.2001 0.0955 0.0557 0.0185 0.8891

Table 7. The rBias and rsqMSEs of MLEs for p = 0.3.

n r β̂ δ̂1 δ̂2 θ̂ p̂

30 15 rBias 7.8958 0.0631 0.0374 −0.0174 −0.8314
rsqMSE 7.8961 0.0632 0.0374 0.0174 0.8315

50 25 rBias 5.0357 0.0586 0.0811 −0.0184 −0.8866
rsqMSE 5.0358 0.0587 0.0811 0.0184 0.8867

50 30 rBias 2.9665 0.0719 0.0419 −0.0187 −0.9196
rsqMSE 2.9665 0.0720 0.0419 0.0187 0.9197

100 30 rBias 4.7010 0.0766 0.0574 −0.0188 −0.9245
rsqMSE 4.7011 0.0766 0.0574 0.0188 0.9245

Table 8. The rBias and rsqMSEs of MLEs for p = 0.5.

n r β̂ δ̂1 δ̂2 θ̂ p̂

30 15 rBias 6.5672 0.1020 0.0448 −0.0175 −0.8937
rsqMSE 6.5674 0.1021 0.0448 0.0175 0.8937

50 25 rBias 4.5287 0.0565 0.0442 −0.0182 −0.9311
rsqMSE 4.5288 0.0567 0.0442 0.0182 0.9312

50 30 rBias 5.6215 0.0777 0.0278 −0.0186 −0.9380
rsqMSE 5.6216 0.0778 0.0279 0.0186 0.9381

100 30 rBias 4.4166 0.1011 0.0533 −0.0188 −0.9485
rsqMSE 4.4167 0.1012 0.0534 0.0188 0.9485

5. Conclusions

In this study, we proposed a maximum likelihood estimation method and a Bayesian
estimation procedure using the MH-GS MCMC approach to obtain reliable Bayes estima-
tors of the CDS model parameters and baseline survival function based on SOS samples
when the component lifetimes follow the baseline of mixture-BXIID. The PTHR function is
used to characterize the increased system hazard caused by component failures. For each
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component failure, the stress loading can be equally redistributed to the surviving com-
ponents in the CDS. The proposed methods include the Bayesian estimation for a single
baseline of BXIID for CDS as special case when p = 1.

The implementation of the proposed Bayesian estimation method with the MH-
GS MCMC approach is presented systematically in Method I. The proposed Bayesian
estimation method is studied by utilizing a numerical example. An intensive simulation
study is conducted to evaluate the performance of the proposed Bayesian estimation
method and the maximum likelihood estimation method. Based on the simulation results
in Section 4, we find that the proposed Bayesian estimation method outperforms the
maximum likelihood estimation method to obtain reliable estimates of the CDS model
parameters and its baseline survival function in terms of the relative bias and MSE.

The maximum likelihood estimation method does not perform well in obtaining
reliable MLEs of the shape parameter and mixture proportion, and it is also intractable
to obtain the Fisher information matrix to construct an approximate confidence interval
for the baseline survival function of mixture-BXIID. Therefore, one major contribution of
this study is to propose a simple Bayesian estimation method to overcome the divergence
problem of the typical maximum likelihood estimation method to obtain approximate
MLEs using a non-informative prior distribution. Moreover, the proposed HCI and ECI
methods based on using the Markov chains of the baseline survival function can help
practitioners to carry out interval inference for the baseline survival function.

The simulation results in Section 4 also show that the estimation quality of the Bayes
estimate for the mixture proportion is worse than the estimation quality of the Bayes
estimates for other parameters. Moreover, the censoring rate significantly influences the
estimation quality of Bayes estimates. When the censoring rate is low, the rBias and rsqMSE
of the Bayes estimate could be less stable and fail to decrease along the sample size. There
is also room to improve the estimation quality of using the proposed Bayesian estimation
method to estimate the shape parameter of the mixture-BXIID. It is also important to extend
the proposed Bayesian estimation method to other mixture distributions. These topics can
be studied in the future.
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